Urbanistica INFORMAZIONI

Il progetto di rete verde multisistemica nella città di Mykolaiv

Parte del Focus “Ricostruire Mykolaiv”
a cura di Stefano Salata

Stefano Salata

Ricercatore Lab PPTE, DAStU/ Politecnico di Milano

Elisa Boraso

Politecnico di Milano

Nicolas Buzzella

Politecnico di Milano

Sara Dassi

Politecnico di Milano

Sofia Festa

Politecnico di Milano

Abstract

Il lavoro di ricerca si è proposto di contribuire alla pianificazione ambientale ed ecologica per il masterplan di ricostruzione della città di Mykolaiv, in Ucraina. Il processo è iniziato definendo le caratteristiche ambientali del sito utilizzando i dati acquisiti dai satelliti Sentinel, liberamente scaricabili dal portale Copernicus ONDA-DIAS e poi geoprocessati per poter ottenere le più recenti informazioni relative all’uso e copertura del suolo, all’impermeabilizzazione e al Normalized Difference Vegetation Index (NDVI). Tale operazione di accesso, scarico ed elaborazione di dati satellitari ha consentito di gestire in maniera autonoma e rapida, la ricostruzione di un quadro di indicatori di base che fosse in grado di rappresentare la qualità ecologico-ambientale della città prima del suo bombardamento e creare, pertanto, un benchmark utile per definire i target in fase di ricostruzione post-bellica. Dopo aver effettuato varie analisi degli ecosistemi e condotto un’approfondita analisi del territorio di Mykolaiv, è stato preparato un elaborato utile a supportare il disegno di una infrastruttura verde.

Riferimenti bibliografici

Asleson B. C., Nestingen R. S., Gulliver J. S., Hozalski R. M., Nieber J. L. (2009), “Performance assessment of rain gardens”, Journal of the American Water Resources Association, vol. 45(4), p. 1019-1031. [https://doi.org/10.1111/J.1752-1688...]
Biswal B. K., Bolan N., Zhu Y., Balasubramanian R. (2022) “Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review”, Resources, Conservation and Recycling, vol. 186, 106578. [https://doi.org/10.1016/J.RESCONREC...]
Bortolini L., Zanin G. (2018), “Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions”, Urban Forestry & Urban Greening, vol. 34, p. 121-133. [https://doi.org/10.1016/J.UFUG.2018...]
Bun R. Marland G., Oda T., See L., Puliafito E., et al. (2024), “Tracking unaccounted greenhouse gas emissions due to the war in Ukraine since 2022”, Science of The Total Environment, vol. 914, 169879. [https://doi.org/https://doi.org/10....]
Calliari E., Castellari S., Davis M., Linnerooth-Bayer J., Martin J., et al. (2022), “Building climate resilience through nature-based solutions in Europe: A review of enabling knowledge, finance and governance frameworks”, Climate Risk Management, vol. 37, 100450. [https://doi.org/10.1016/J.CRM.2022....]
Congedo L., Sallustio L., Munafò M., Ottaviano M., Tonti D. et al. (2016), “Copernicus high-resolution layers for land cover classification in Italy”, Journal of Maps, vol. 12(5), p. 1195-1205. [https://doi.org/10.1080/17445647.20...]
Dunnett N., Nagase A., Booth R., Grime P. (2008), “Influence of vegetation composition on runoff in two simulated green roof experiments”, Urban Ecosystems, vol. 11(4), p. 385-398. [https://doi.org/10.1007/S11252-008-...]
Günther A., Van Den Eeckhaut M., Malet J., Reichenbach P., Hervás J. (2014), “Climatephysiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information”, Geomorphology, vol. 224, p. 69-85. [https://doi.org/10.1016/j.geomorph....]
Kondratov I. S., Moroz Y. S., Gorgulla C., Grygorenko O. O., Komarov I. V., et al. (2022), “Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and support”, Proceedings of the National Academy of Sciences of the United States of America, vol. 119(50), e2210686119. [https://doi.org/10.1073/pnas.2210686119]
Laurenson G., Laurenson S., Bolan N., Beecham S., Clark I. (2013), “Chapter Four - The Role of Bioretention Systems in the Treatment of Stormwater”, in D. L. Sparks (ed.), Academic Press (Advances in Agronomy), p. 223-274. [https://doi.org/10.1016/B978-0-12-4...]
Meerow S., Newell J. P. (2017), “Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit”, Landscape and Urban Planning, vol. 159, p. 62-75. [https://doi.org/10.1016/j.landurbpl...]
Münch Z., Gibson L., Palmer A. (2019), “Monitoring Effects of Land Cover Change on Biophysical Drivers in Rangelands Using Albedo”, Land, vol. 8(2), p. 33. [https://doi.org/10.3390/land8020033]
Norton B. A., Coutts A.M., Livesley S.J., Harris R.J., Hunter A.M. et al. (2015), “Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes”, Landscape and Urban Planning, vol. 134, p. 127-138. [https://doi.org/10.1016/j.landurbpl...]
van Ouwerkerk C., Soane B. D. (1995), “ISTRO Workshop on the Effects of Soil Compaction on Physical, Chemical and Biological Factors in the Environment, Melitopol, Ukraine, 25 August 1993”, Soil and Tillage Research, vol. 35, p. 1-113. [https://doi.org/10.1016/0167-1987(9...]
Pappalardo V., La Rosa D., Campisano A., La Greca P. (2017), “The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study”, Ecosystem Services, vol. 26, p. 345-354. [https://doi.org/10.1016/j.ecoser.20...]
Pauleit S., Liu L., Ahern J., Kazmierczak A. (2011), “Multifunctional Green Infrastructure Planning to Promote Ecological Services in the City”, in J. Niemelä, J. H. Breuste, T. Elmqvist, G. Guntenspergen, P. James, et al. (eds.), Urban Ecology, Oxford University Press, Oxford, p. 272–285. [https://doi.org/10.1093/acprof:oso/...]
Richards P. J., Williams N. S. G., Fletcher T. D., Farrell C. (2017), “Can raingardens produce food and retain stormwater? Effects of substrates and stormwater application method on plant water use, stormwater retention and yield”, Ecological Engineering, vol. 100, p. 165-174. [https://doi.org/https://doi.org/10....]
Salata S., Arslan B. (2022), “Designing with Ecosystem Modelling: The Sponge District Application in İzmir, Turkey”, Sustainability, vol. 14, 3420. [https://doi.org/10.3390/SU14063420]
Vidal D. G., Barros N., Maia R. L. (2020, “Public and Green Spaces in the Context of Sustainable Development”, in W. Leal Filho, A. Azul, L. Brandli, P. Özuyar, T. Wall (eds.) Sustainable Cities and Communities, Encyclopedia of the UN Sustainable Development Goals, Springer Nature Switzerland AG, Cham, p. 1-9. [https://doi.org/10.1007/978-3-319-7...].
Xie P., Wu Z., Sang Y., Gu H., Zhao Y., et al. (2018), “Evaluation of the significance of abrupt changes in precipitation and runoff process in China”, Journal of Hydrology, vol. 560, p. 451-460. [https://doi.org/10.1016/J.JHYDROL.2...]
Zölch T., Henze L., Keilholz P., Pauleit S. (2017), “Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale”, Environmental Research, vol. 157, p. 135-144. [https://doi.org/10.1016/J.ENVRES.20...]

Data di pubblicazione: 20 maggio 2024