Parte del Focus "Nuove tecnologie e Intelligenza artificiale. Sfide per la pianificazione"
a cura di Adriano Bisello e Michele Grimaldi
PhD student, URD - DIST/Politecnico di Torino, Eurac Research Institute for Renewable Energies
Dcp/Università IUAV di Venezia
DIST/Politecnico di Torino
Eurac Research Institute for Renewable Energies
Per raggiungere gli obiettivi di riduzione delle emissioni di CO₂, è cruciale intervenire sulle città, responsabili del 67% del consumo energetico globale e del 70% delle emissioni legate all’energia. Gli effetti del cambiamento climatico sono sempre più evidenti, rendendo necessaria un’azione urgente. In questo contesto, i Distretti a energia positiva (PED) emergono come modelli innovativi per promuovere l’autosufficienza energetica e l’efficienza delle risorse. Questo studio analizza il ruolo dei PED nella transizione energetica urbana, con un focus sulla loro applicazione nel contesto mediterraneo ed europeo. La ricerca mira a definire un diagramma Causal Loop Diagram per analizzare il processo di rigenerazione urbana, fornendo a progettisti e amministrazioni uno strumento utile per valutare impatti e potenziali criticità. Viene esplorata l’interazione tra stakeholder, infrastrutture e politiche, con l’obiettivo di fornire linee guida per una pianificazione urbana più integrata, resiliente e sostenibile.
Aboagye P. D., Sharifi A. (2024), “Urban climate adaptation and mitigation action plans: A critical review”, Renewable and Sustainable Energy Reviews, vol. 189, 113886. https://doi.org/10.1016/j.rser.2023.113886
Agostini P., Pizzol L., Critto A., D’Alessandro M., Zabeo A., et al. (2012), “Regional risk assessment for contaminated sites Part 3: Spatial decision support system”, Environment International, vol. 48, p. 121-132. https://doi.org/10.1016/j.envint.2012.07.005
Baccarini D. (1996), “The concept of project complexity-a review”, International journal of project management, vol. 14, no. 4, p. 201-204.
Balest J., Pisani E., Vettorato D., Secco L. (2018), “Local reflections on low-carbon energy systems: A systematic review of actors, processes, and networks of local societies”, Energy Research & Social Science, vol. 42, p. 170-181. https://doi.org/10.1016/j.erss.2018.03.006
Bertolami I., Bisello A., Volpatti M., Bottero M. (2024), “Exploring Multiple Benefits of Urban and Energy Regeneration Projects: A Stakeholder-Centred Methodological Approach”, Energies, vol. 17, no. 12, 2862. https://doi.org/10.3390/en17122862
Bisello, A., Bottero, M., Volpatti, M., Binda, T. (2024), “Multicriteria Spatial Economic Decision Support Systems to Support Positive Energy Districts: A Literature Review” in A. Bisello, D. Vettorato, M. Bottero, D. Kolokotsa (eds.), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2022, Springer Nature, Switzerland, p. 15-31. https://doi.org/10.1007/978-3-031-39206-1_2
Bisello A., Vettorato D. (2018), “3.5-Multiple Benefits of Smart Urban Energy Transition”, in P. Droege (ed.), Urban Energy Transition (Second Edition), Elsevier, Amsterdam, p. 467-490. https://doi.org/10.1016/B978-0-08-102074-6.00037-1
Bossi S., Gollner C., Theierling S. (2020), “Towards 100 positive energy districts in europe: Preliminary data analysis of 61 European cases”, Energies, vol. 13, no. 22, 6083. https://doi.org/10.3390/en13226083
Bottero M., Mondini G., Oppio A. (2016), “Decision Support Systems for Evaluating Urban Regeneration”, Procedia - Social and Behavioral Sciences, vol. 223, 923–928. https://doi.org/10.1016/j.sbspro.2016.05.319
Caballero N., Balest J., Giacovelli G., Akbarinejad T., Desthieux G., et al. (2024), An Integrated Framework for Stakeholder and Citizen Engagement in Solar Neighborhoods, IEA Solar Heating and Cooling Technology. https://doi.org/10.18777/ieashc-task63-2024-0001
Clerici Maestosi P., Salvia M., Pietrapertosa F., Romagnoli F., Pirro M. (2024), “Implementation of Positive Energy Districts in European Cities: A Systematic Literature Review to Identify the Effective Integration of the Concept into the Existing Energy Systems”, Energies, vol. 17, no. 3. https://doi.org/10.3390/en17030707
Cruz C. O., Silva C. M., Dias P. V., Teotónio I. (2017), “Economic impact of changing thermal regulation-An application to the city of Lisbon”, Energy and Buildings, vol. 149, p. 354–367. https://doi.org/10.1016/j.enbuild.2017.05.030
S&P Global, sito ufficiale [https://www.spglobal.com/esg/about/index].
European Commission (2022), Energy and Smart Cities [https://energy.ec.europa.eu/topics/...].
Gantioler S., Balest J., Tomasi S., Voltolini F., DellaValle N. (2023), “Transformative disruptiveness or transition? Revealing digitalization and deep decarbonization pathways in the Italian smart electricity meter roll-out”, Energy Research & Social Science, vol. 106, 103309. https://doi.org/10.1016/j.erss.2023.103309
Gondeck M., Triebel M.-A., Steingrube A., Albert-Seifried V., Stryi-Hipp G. (2024), “Recommendations for a positive energy district framework – Application and evaluation of different energetic assessment methodologies”, Smart Energy, vol. 15, 100147. https://doi.org/10.1016/j.segy.2024.100147
Grazieschi G., Asdrubali F., Guattari C. (2020), “Neighbourhood sustainability: State of the art, critical review and space-temporal analysis”, Sustainable Cities and Society, vol. 63, 102477. https://doi.org/10.1016/j.scs.2020.102477
Grazieschi G., Zubaryeva A., Sparber W. (2023), “Energy and greenhouse gases life cycle assessment of electric and hydrogen buses: A real-world case study in Bolzano Italy”, Energy Reports, vol. 9, p. 6295-6310. https://doi.org/10.1016/j.egyr.2023.05.234
Guarino F., Bisello A., Frieden D., Bastos J., Brunetti A. et al. (2022), “State of the Art on Sustainability Assessment of Positive Energy Districts: Methodologies, Indicators and Future Perspectives”, in J. R. Littlewood, R. J. Howlett, L. C. Jain (eds.), Sustainability in Energy and Buildings 2021, p. 479–492, Springer Nature, Singapore.
IEA - International Energy Agency (2020), CO2 emissions in MT by sector, World 1990-2018 [https://Www.Iea.Org/Data-and-Statistics].
Isaac S., Shubin S., Rabinowitz G. (2020), “Cost-Optimal Net Zero Energy Communities”, Sustainability, vol. 12, no. 6, 2432. https://doi.org/10.3390/su12062432
Lwasa S., Seto K., Bai X., Blanco H., Gurney K. et al. (2022), “Urban systems and other settlements”, Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
Marrasso E., Martone C., Pallotta G., Roselli C., Sasso, M. (2024), “A novel methodology and a tool for supporting the transition of districts and communities in Positive Energy Districts”, Energy and Buildings, vol. 318, 14435. https://doi.org/10.1016/j.enbuild.2024.114435
Mihailova D., Schubert I., Martinez-Cruz A. L., Hearn A. X., Sohre A. (2022), “Preferences for configurations of Positive Energy Districts – Insights from a discrete choice experiment on Swiss households”, Energy Policy, vol. 163, 112824. https://doi.org/10.1016/j.enpol.2022.112824
Muñoz I., Hernández P., Pérez-Iribarren E., Pedrero J., Arrizabalaga E., et al. (2020), “Methodology for integrated modelling and impact assessment of city energy system scenarios”, Energy Strategy Reviews, vol. 32, 100553. https://doi.org/10.1016/j.esr.2020.100553
Rehman H. U., Reda F., Paiho S., Hasan A. (2019), “Towards positive energy communities at high latitudes”, Energy Conversion and Management, vol. 196, p. 175–195. https://doi.org/10.1016/j.enconman.2019.06.005
Volpatti M., Mazzola E., Bottero M. C., Bisello A. (2024a), “Toward a certification protocol for Positive Energy Districts. A methodological proposal”, TeMA - Journal of Land Use, Mobility and Environment, p. 137-153.
Volpatti, M., Mazzola, E., Bottero, M. C., Bisello, A. (2024b), “The Role of Positive Energy Districts through the Lens of Urban Sustainability Protocols in the Case Studies of Salzburg and Tampere”, Buildings, vol. 14, no. 1, p. 7. https://doi.org/10.3390/buildings14010007